
WP2: Architecture i

Work package: Date:

WP2 Architecture June 4th 2010
Partner / author

SINTEF / Richard Sanders (w/Erlend &
Jacqueline)

UbiCompForAll

Classification: Public

Memo title::

Architecture: Context view
Memo:

This memo describes the UbiCompForAll architecture. It follows the MAFIIA framework for
defining architectures [1]. The Context viewpoint and Requirements viewpoint have been defined,
with a Business aspects model, the Environment systems model and the Business to system mapping
model. In addition a component view has been sketched. The Business aspects model is exemplified
by the City Guide and Reminder applications, the latter being a generalization of the “Doctor’s
appointment” scenario.

Table of contents

1 TERMS AND CONCEPTS .. II

2 CONCERNS ... IV

3 ARCHITECTURE: CONTEXT VIEW ...V

3.1 BUSINESS ASPECTS MODEL ... V
3.2 ENVIRONMENT SYSTEMS MODEL .. VII
3.3 BUSINESS TO SYSTEM MAPPING MODEL.. VII

4 REQUIREMENT VIEW ... IX

4.1 REQUIREMENTS MODEL... IX

5 COMPONENT VIEW ... XI

6 EXEMPLIFIED ARCHITECTURE USING CITY GUIDE DOMAIN...XIII

6.1 BUSINESS ASPECTS MODEL .. XIII

7 ARCHITECTURE EXEMPLIFIED WITH AMBIENT ASSISTED LIVING SERVICE.................XV

7.1 BUSINESS ASPECTS MODEL ...XV

8 REFERENCES... XVIII

F
o

rA
ll

UbiComp

F
o

rA
ll

UbiComp

ii WP2: Architecture

1 Terms and concepts
The following is a list of terms and concepts defined for use in the architecture and by the project.

Software – end-user viewpoint

User service Functionality provided to a service user or a group of service users. User
services are created by service composers.

Application A software component running on a user’s device that provides a specified
functionality to a user.

Software – computational viewpoint

Software component Software unit that encapsulates a set of related functions. According to
Szyperski [2], a component provides functionality through contractually
specified interfaces and defines explicit dependencies to its environment
such as required interfaces and acceptable execution platform(s).

Software service Functionality provided by a (one or more) software component to other
software components via (one or more) software interfaces. Services may be
provided locally or by a service host.

User involvement in software creation

End-user
development (EUD)

Software research field aiming at developing environments that allow end
users without professional programming background to develop or modify
their own software artefacts (e.g. applications, web sites) [3].

End-user software
engineering

Research area related to EUD that focuses on software quality and aims at
empowering end users to create bug-free and robust software applications.
UbiCompForAll addresses this research area [4].

End-user service
composition

Specific research area within EUD where end users develop or modify
software artefacts through the assembly of services. UbiCompForAll
addresses this research area.

Stakeholders roles

End user In the role of an end user an actor uses an application via some user
interface. In UbiCompForAll end users include both service composers and
service users. Typically end users have a non-professional programming
background

Service composer
(composer)

In the role of a service composer an actor develops or modifies user services
using UbiCompForAll composition notations, methods and tools.

Service user1 In the role of a service user an actor participates in user services.

Developer In the role of a developer an actor creates or adapts software components or
software services for general use. Typically developers have a professional
programming background.

Domain developer In the role of a domain developer an actor creates or adapts software
components or services for use in the UbiCompForAll service composition
framework. Typically domain developers have a professional programming
background.

Environment In the role of environment developer an actor specifies a service composition

1 We distinguish between primary and ordinary service users, the latter participates without requiring any
specific deployment of services or components used by a user service.

WP2: Architecture iii

developer framework and runtime environment for use in UbiCompForAll. Typically
environment developers have a professional programming background

Service host An organization that offers facilities for hosting a) software services created
by developers and/or b) user services created by service composers.

UbiCompForAll software artefacts

Service composition
framework

Collection of notations, tools and middleware support developed in
UbiCompForAll for the composition of user services.

Service composition
notations

Notations used to specify a composition of user services, including
conditions, constraints and non-functional requirements.

Adaptation tool
(UbiCompPRO)

A software tool that aids the domain developer in adapting software
components or services to be used in the UbiCompForAll service
composition framework.

Service composition
tool (UbiComposer)

A software tool that aids the service composer in composing user services.

Middleware support
(UbiCompRun)

A software infrastructure that is needed to enable the composition, execution
and management of user services.

Building block An element used by a service composer when composing a user service
(can represent a software component or software service)

iv WP2: Architecture

2 Concerns
Concerns are related to the documentation of the functional aspects of the target system and its
environment. Functional aspects that are considered to be of such importance that it should be treated
separately and be specifically visible in the documentation should be identified and treated as a
concern.

Important concerns for UbiCompForAll are understandability, learnability, operability, installability,
and configurability. Understandability, learnability and operability are sub-characteristics of usability.

 Understandability: “The capability of the software product to enable the user to understand
whether the software is suitable, and how it can be used for particular tasks and conditions of
use.” [5]

 Learnability: “The capability of the software product to enable the user to learn its
application.” [5]

 Operability: “The capability of the software product to enable the user to operate and control
it.” [5]

 Installability: “The capability of the software product to be installed in a specified
environment.” [5]

 Configurability: “This concern is relevant for all systems having a certain complexity, and
where adaptability and flexibility is important.” [1]

WP2: Architecture v

3 Architecture: Context view
The purpose with the context view is to describe all aspects of the Target System’s environment,
which is of importance to be able to document all the interfaces between the Target System and its
environment, and what the Target System is intended to do in its environment.

According to MAFIIA [1] we define the Business aspects model in Figure 1.

3.1 Business aspects model

Developer

Service
user

search

compose

configure

publish

deploy

use

validate

Service
composer

engineer

Service host
host

services

test

install

Domain developer

Environment
developer

specify
runtime

environment

DS publish DS adapt
DS

engineer

DS = Domain Specific

specify
composition
framework

Figure 1: Business aspects model

Note:

1. One and the same person can play both Composer and/or Service user
2. We distinguish between primary and ordinary Service users, the latter participates without

requiring any specific deployment of services or components used by a user service
3. One and the same person can play both Environment developer, Domain developer and/or

Developer

We suggest that sharing compositions is not given emphasis at this stage in the project. Many things
have to be put in place to support sharing (privacy, security, trust, payment etc).

Table 1: Specification of actors (stakeholder) and activities of the business aspects model

Stakeholder / activity Description

Domain environment developer creates composition framework and runtime environment

specify composition framework specify composition framework (such as roles, relationships,
rules, collaborations, notations, basic components and main
tasks with extension points) for a domain

specify runtime environment specify runtime mechanisms (such as glue logic interpreter,

vi WP2: Architecture

deployment, discovery mechanisms) for a domain

Domain developer adapts generic solutions to the needs of the domain

DS engineer

(DS: Domain specific)

make new services and components that fulfil needs of the
domain, e.g. realize extension points of the DS framework

DS adapt adapt existing services and components so they fulfil the
specific needs of the domain, such as modifying graphical
icons and names, and adding domain specific semantics

DS publish publish services and components that fulfil specific needs of
the domain, e.g. realize extension points of the DS framework

Developer creates and publishes generic software components

engineer create software components that fulfil generic needs

publish publish software components so they can be found and used

Service host hosts domain specific services to end users (e.g. a
positioning system in the Wireless Trondheim network)

host services host software and services to fulfil domain specific needs of
end users, such as Group Management for City Guide

Service composer composes and configures services for end users

search look for and find services and components among the domain
specific ones published that can fulfil needs of the service

compose create a service composition from domain specific services
and components, according to the needs of some end users

test test a service composition

deploy deploy the various services and components involved in a
service composition to devices and servers

(primary) Service user installs, configures and uses software components on
servers and devices

install install software services & components on servers and devices

configure configure software services & components on servers and end
user devices

use use services from the user’s current device

Ordinary Service user takes part in services without specific deployment

use use services from the user’s current device without requiring
any specific deployment of services and components

WP2: Architecture vii

3.2 Environment systems model

The following systems are found in the environment of the system (called UbiSys for short):

 External services
 Service APIs used a design time
 Services provided at runtime

 Software development tools, including:
 Eclipse (for design tool integration and software development)
 Android SDK (for software development for certain handheld devices)
 Arctis (for software component development)

 Runtime support systems, including:
 Android (supporting certain handheld devices)
 ActorFrame (component deployment and runtime support on servers and certain clients)

See Figure 2 in next section.

3.3 Business to system mapping model

In Figure 2 we define the border between the system(s) of UbiSys and the environment.

UbiSys
External
services

Software
development

tools

Runtime
support
systems

Figure 2: System border (overview)

We consider the system UbiSys to consist of three distinct subsystems:

 A composition system for ICT professionals (domain developers and domain environment
developers); we call this UbiCompPRO.

 A composition system for non-ICT professionals (composers); we call this UbiComposer
 A runtime system for end users (installer and primary end-user); we call this UbiCompRun

A more detailed system boundary diagram is shown in Figure 3.

viii WP2: Architecture

UbiSys

UbiCompPRO

DS engineer/DS adapt/DS publish
specify composition framework

specify runtime environment

UbiComposer
search / compose

validate / test
deploy

UbiCompRun
install

configure
use

Software
development

tools
engineer, publish

External
services

publish

External
services
host services

Runtime
support
systems

Figure 3: System borders (detailed)

In Figure 3 we have listed the activities of Figure 1 that are supported by the UbiSys subsystems, as
well as the activities supported by the external systems.

Note that some activities are somewhat on the borderline, such as host DS services, which partly are
within UbiSys and partly in the environment; we have depicted them in the former, since they are
involved in the design process and must be hosted in the runtime system.

An overview of the flow of internal artefacts is shown in Figure 4.

UbiSys

UbiCompPRO

UbiComposer

UbiCompRun

Composition
framework

[Composition]

Component
repository

[Runtime]

Component
repository

Compositions
Runtime

environment

share

ref

create create

create create
use use

use use

Figure 4: Flow of internal artefacts (overview)

WP2: Architecture ix

4 Requirement view
The purpose of the requirement view is to document all specific requirements related to the Target
System.

4.1 Requirements model

At this stage we make to with a textual description, what MAFIIA calls the Requirement specification
form. Model diagrams can be developed later as found necessary.

A list of relevant requirements is given in Table 2 below.

Req.
id

Req. description
Acceptance
test

Priority
(high |
medium
| low)

G1
Existing solutions to end user service composition should be used as
far as possible, such as mashup editors

Inspection Medium

G2
Generic, existing component and services should be used as far as
possible

Inspection Medium

G3
Generic tools to support Domain Developers and Domain
Environment Developers should be used as far as possible

Inspection Medium

G4
Adaptation to a specific domain should not require much effort (this
refers to the activities undertaken by Domain Environment Developer
and Domain Developers)

Inspection Medium

G5 UbiSys should be as domain independent as possible Inspection Medium

G6 The UbiCompPRO tool should be domain independent Inspection Medium

U1
Understandability: UbiComposer must make it easy for the
Composer to understand what software can be composed with it, and
how to create a composition which will achieve the users goal

Inspection

Evaluate
with users?

High

L1

Learnability: UbiComposer must be easy to learn for composers
without professional programming background. It should make it
easy to get started creating simple compositions, and provide
facilities for incrementally acquiring skills needed for more using
more advanced functionality.

Inspection

Evaluate
with users?

High

O1

Operability: UbiComposer must make it possible for the Composer to
create and modify compositions with few steps, and provide an
interface for this which is forgiving and which assists the composer
in creating correct compositions and testing that the composition
behaves as expected.

Inspection

Evaluate
with users?

High

x WP2: Architecture

Req.
id

Req. description
Acceptance
test

Priority
(high |
medium
| low)

I1 Installability: it must be easy to install UbiCompRun.

Inspection

Evaluate
with users?

High

I2 Installability: it should be easy to install UbiComposer.

Inspection

Evaluate
with users?

High

I3
Installability: it should be easy to specify the deployment of
compositions to multiple devices.

Inspection

Evaluate
with users?

High

I4
Installability: it should be easy to install compositions on one or
several devices.

Inspection

Evaluate
with users?

High

C1
Configurability: UbiCompPRO should be configurable to support
creating composition frameworks for different domains and using
different composition facilities

Inspection Medium

C2
Configurability: UbiComposer must be configurable to support
different domains and different composition facilities

Inspection High

C3
Configurability: UbiComposer should be configurable to combine
different domains and composition facilities within one composition
framework for the Composer.

Inspection Medium

C4
Configurability: UbiCompRun should be configurable to support
runtime execution of compositions related to different domains and
built using different composition facilities.

Inspection High

C5
Configurability: UbiCompRun should be configurable to combine
runtime execution support of compositions related to different
domains and built using different composition facilities.

Inspection Medium

D1
Distribution transparency: Composers should not need to worry about
details about protocols when composing and specifying deployment

F1
Fault handling: error messages should be understandable for
composers and end users

N1
Naming: the vocabulary used in UbiComposer, including commands
and component names, should be understandable for composers

Table 2: Requirement specification form

WP2: Architecture xi

5 Component view
The purpose of the component view is to identify and document specific physical or logical
components. Component descriptions should be purely functional, described by their data, interfaces
and functionality. Note that existing or predefined hardware- or software-units can be treated as
components and included as components in the component view.

We analyze the tasks and artefacts that are involved, starting with the tasks involving IT-professionals.

Engineer Publish

Provide

Service Description

Service

Component Description

Component

Collaboration Description

Collaboration Model

Internal behaviour

External properties

Implementation

DS adapt

DS description

DS engineer

DS component

DS composition FW

DS publish

Specify DS composition
framework

Specify DS runtime
environment

DS runtime environment

«output»

«output»

«output»

«output»

«output»

«output»

«input»

«output»

«output»

«output»

«input»

«input»

«input»

«input»

«input»

«output»

«input»

«output»

«input»

«input»
«output»

«inoutput»

«inoutput»

«output»

«output»

«input»

Figure 5: Tasks and artefacts for IT-professionals

In Figure 5 we see the tasks and artefacts involving the roles of Developer, Service host, Domain
developer and Domain environment developer, i.e. the IT-professionals.

 The Developer performs the Engineer and Publish tasks. Artefacts involved:
 collaboration model (e.g. UML2 collaborations): output from Engineer and input to Publish
 internal behaviour (e.g. UML state machines): output from Engineer
 external properties (interface specifications): output from Engineer / input to Publish
 implementation (programming code): output from Engineer / input to Publish
 collaboration description (e.g. goal sequences): output from Publish
 component description (e.g. interface dependencies): output from Publish
 component (programming code, executables): output from Publish

 The Service host performs the host DS services (Provide) task. Artefacts involved:
 service description (e.g. interface specifications): output from Provide
 service (programming code, executables): output from Provide

 The Domain environment developer performs Specify composition framework. Artefacts:
 DS composition framework is output

xii WP2: Architecture

 The Domain environment developer performs Specify runtime environment. Artefacts:
 DS runtime environment is output

 The Domain developer performs DS adapt. It takes the collaboration description and the
component description, and produces the DS description

 The Domain developer performs DS engineer. It takes the collaboration description, the
component description, the component (code), the DS composition FW and the DS runtime
environment, and produces a DS component and a DS description

 The Domain developer performs DS publish. It takes the DS component and the DS description as
input and revises it (hence “inoutput”).

WP2: Architecture xiii

6 Exemplified architecture using City Guide domain
Below we exemplify the architecture using the application area (domain) called City Guide. The goal
of City Guide is to make it easy for non-professionals to create city tour services customized to the
needs of individual tourists or tourist groups. Such customized services typically provide information
about points of interest and navigation support. The tourists use handheld devices to access them.

6.1 Business aspects model

Table 3: Examples of activities of the business aspects model for City Guide

Stakeholder / activity Description

Domain environment developer creates composition framework and runtime environment

specify composition framework

specify composition framework (such as
roles, relationships, rules, collaborations,

notations, basic components and main tasks
with extension points) for a domain

roles (guide, tourist/group, route, place), relationships
(routes link places, tourists follow routes etc), rules (routes
have a start and a stop place), collaborations (navigate to
next place on route), notations (special icons for roles), basic
components (City Guide editor, group management,
navigation support) and main tasks (guided tour) with
extension points (get multimedia info about a place)

specify runtime environment:

specify runtime mechanisms (such as glue
logic interpreter, deployment, discovery

mechanisms) for a domain

glue logic interpreter (specify City Guide interpreter),
deployment (deploy City Guide components to group
leader’s device using OSGi; configure web server), discovery
mechanisms (find approved tourist info about places)

Domain developer adapts generic solutions to the needs of the domain

DS engineer: make new services and
components that fulfil needs of the domain,

e.g. realize extension points of the DS
framework

make service: suggest next place on route

make component: City Guide editor, Group management for
City Guide

DS adapt: adapt existing services and
components so they fulfil the specific needs
of the domain, such as modifying graphical

icons and names, and adding domain
specific semantics

adapt advertisers nearby: filter out unsolicited advertisers

adapt GPS navigator: select places on route

DS publish: publish services and
components that fulfil specific needs of the
domain, e.g. realize extension points of the

DS framework

publish City Guide advertisers nearby

publish City Guide GPS navigator

Developer creates and publishes generic software components

engineer: create software components
that fulfil generic needs

GPS company: create GPS navigator

publish: publish software components so
they can be found and used

GPS company: publish GPS navigator

External service provider provides and publishes generic software services

xiv WP2: Architecture

provide: provide software services that
fulfil generic needs

Google: provide advertisers nearby for Google maps

publish: publish software services so they
can be found and used

Google: publish advertisers nearby for Google maps

Service host hosts domain specific services to end users (e.g. a
positioning system in the Wireless Trondheim network)

host services: provide software and
services to fulfil specific needs of end users

Wireless Trondheim: supports publishing and finding points
of interest (places) in Trondheim

Service composer composes and configures services for end users

search: look for and find services and
components among the domain specific

ones published that can fulfil needs

find service City Guide advertisers nearby

find component City Guide GPS navigator

compose: create a service composition
from domain specific services and

components, according to the needs of some
end users

use City Guide editor to compose glue logic for a three-hour
group tour of central Trondheim for a group of people visiting
the town during XP2010

test: test a service composition test the composition

deploy: deploy the various services and
components involved in a service

composition to devices and servers

deploy of a tour of central Trondheim: City Guide advertisers
nearby to run on a server hosted by Wireless Trondheim, City
Guide GPS navigator to run on an Android device

Service user installs, configures and uses software components on
servers and devices

install: install software services and
components on servers and devices

install City Guide GPS navigator on the Android device of
the leader of the XP2010 group

configure: configure software services
and components on servers and end

user devices

configure a three-hour tour of central Trondheim on the route
web server

use: use services from the user’s current
device

The group leader uses City Guide GPS navigator to guide the
group through Trondheim, using City Guide advertisers
nearby as they progress along the route

Ordinary service user takes part in services without specific deployment

use: use services from the user’s current
device without requiring any specific

deployment of services and components

Group participants use standard device software (multimedia
players etc) to read, listen to and view information about the
points of interest (places) accessed via the route web service

WP2: Architecture xv

7 Architecture exemplified with Ambient Assisted Living service
Below we exemplify the architecture using the application Reminder from the problem area (domain)
of Ambient Assisted Living. The goal of Reminder is to make it easy for caretakers (e.g. next of kin)
to create reminders, guidance and monitoring services customized to the needs of subjects of care (e.g.
a slightly dement senior citizen).

The customized services remind the subject of care of upcoming events (for instance a doctor’s
appointment), where they take place and how to get there (navigation support), and allows the
caretaker follow the subject of care and be alerted of a deviation from plan. The subject of care has a
reminder touch-screen at home and a handheld device for navigation support and contact with
caretaker.

7.1 Business aspects model

Table 4: Examples of activities of the business aspects model for Reminder

Stakeholder / activity Description

Domain environment developer creates composition framework and runtime environment

specify composition framework

specify composition framework (such as
roles, relationships, rules, collaborations,

notations, basic components and main tasks
with extension points) for a domain

roles (subject of care, caretaker, event, route, place),
relationships (routes link places, subject of care follows
route etc), rules (events are due at a certain time at a certain
place, routes have a start and a stop place), collaborations
(navigate to next place on route, track subject of care),
notations (special icons for roles, events, places), basic
components (Reminder editor, event scheduler, position,
navigation support) and main tasks (remind of next event,
navigation along route to place) with extension points (get
current travel info about a route)

specify runtime environment:

specify runtime mechanisms (such as glue
logic interpreter, deployment, discovery

mechanisms) for a domain

glue logic interpreter (specify Reminder interpreter),
deployment (deploy components to subject of care’s mobile
device; configure web server and reminder screen), discovery
mechanisms (find info about events)

Domain developer adapts generic solutions to the needs of the domain

DS engineer: make new services and
components that fulfil needs of the domain,

e.g. realize extension points of the DS
framework

make service: alert caretaker of out-of-bounds position of
subject according to current planned route.

make component: Reminder editor, Event management for
Reminder

DS adapt: adapt existing services and
components so they fulfil the specific needs
of the domain, such as modifying graphical

icons and names, and adding domain
specific semantics

adapt events nearby: filter out unsolicited events

adapt GPS navigator to select next place on route and give
spoken navigation assistance to subject of care

xvi WP2: Architecture

DS publish: publish services and
components that fulfil specific needs of the
domain, e.g. realize extension points of the

DS framework

publish Reminder events nearby

publish Reminder GPS navigator

Developer creates and publishes generic software components

engineer: create software components
that fulfil generic needs

GPS company: create GPS navigator

publish: publish software components so
they can be found and used

GPS company: publish GPS navigator

External service provider provides and publishes generic software services

provide: provide software services that
fulfil generic needs

Google: provide events nearby for Google maps

publish: publish software services so they
can be found and used

Google: publish events nearby for Google maps

Service host hosts domain specific services to end users (e.g. a
positioning system in the Wireless Trondheim network)

host services: provide software and
services to fulfil specific needs of end users

Wireless Trondheim: support publishing and finding events of
interest to senior citizens at places in Trondheim

Service composer composes and configures services for end users

search: look for and find services and
components among the domain specific

ones published that can fulfil needs

find service Reminder events nearby

find component Reminder GPS navigator

compose: create a service composition
from domain specific services and

components, according to the needs of some
end users

use Reminder editor to compose glue logic for an event
involving the subject of care taking public transport (a bus) to
a place in town, being there in time for the event, and
monitoring of off-track/off-schedule occurrences to caretaker.

test: test a service composition test the composition

deploy: deploy the various services and
components involved in a service

composition to devices and servers

deploy an event reminder: Reminder events nearby runs on a
server hosted by Wireless Trondheim, Reminder GPS
navigator on an Android device

Service user installs, configures and uses software components on
servers and devices

install: install software services and
components on servers and devices

install Reminder GPS navigator on the Android device of the
subject of care

configure: configure software services
and components on servers and end

user devices

configure the home screen of the subject of care with info
about the event.

WP2: Architecture xvii

use: use services from the user’s current
device

The subject of care learns of the event “17:30 today: Meeting
for pensioned academics at Trondheim Technical Museum”
added by Reminder events nearby from the home screen,
confirms attendance by touching the screen, and uses
Reminder GPS navigator to guide herself on and off the right
bus in time to get to the meeting.

Ordinary service user takes part in services without specific deployment

use: use services from the user’s current
device without requiring any specific

deployment of services and components

Caretaker uses standard web browser etc to view information
about events the subject of care is attending, and is notified of
any off-track/off-schedule occurrences via email and/or SMS,
in which case the caretaker can call the subject of care.

xviii WP2: Architecture

8 References
[1] The MAFIIA handbook – An architectural Description Framework for Information Integration

Systems, Report STF90 A05139, SINTEF ICT, February 2003 (ISBN 82-14-03816-2)

[2] Szyperski, C., "Component Software: Beyond Object-Oriented Programming", Addison Wesley,
1997 (2nd ed. 2002, ISBN 0-201-74572-0)

[3] Lieberman. H., Paternò, F., Wulf, V., “End-User Development”, Springer, 2005 (ISBN 1-4020-
5309-6)

[4] IEEE Software, Special issue on End-User Software Engineering, vol. 26 (5), 2009

[5] ISO/IEC 9126-1:2001(E)

